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FOREWORD

This report was prepared by T. E. Everhart and J. Horowitz,

of the Electronics Research Laboratory, University of California,

Berkeley, on Air Force Contract AF 33(657)-7614, under Task No.

415001 of Project No. 4150, "Slow-Wave Circuits for Millimeter Wave-

length Tubes. ", The work was administered under the direction of

Electronic Technology Laboratory, Aeronautical Systems Division.

Mr. W. C. Eppers, Jr. was project engineer for the Laboratory.

The writers wish to thank Dr. R. MEller, who designed the

experimental tube utilizing space-time harmonics upon which this

paper is based. The assistance of the staff of the Electronics Research

Laboratory, particularly D. Barnes, who constructed the experimental

tube, is also appreciated. R. N. Carlile first calculated the amplitude

of the space-charge wave harmonics.
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ABSTRACT

The possibility of gain utilizing the interaction between an

electromagnetic wave in a smooth wave guide and a space-time

harmonic of the slow space-charge wave has been proposed as a

method of millimeter-wave amplification. A model is proposed

here which satisfies the conditions necessary for the existence of

space-time harmonics. This model is an idealization of a tube

having two electron beams where the periodic variation of the dc

parameters of the inner beam is provided by a bunched hollow

outer beam. Since the periodic variation of the inner beam results

from the moving electric field of the bunched beam rather than sta-

tionary electric or magnetic fields, the device illustrates an applica-

tion of space-time harmonics rather than space harmonics and intro-

duces a new method of providing the required periodic variations. A

small signal analysis of the model leads to vanishingly small expres-

sions for the amplitudes of the n = 1, 2,... space-time harmonics,

and hence to the conclusion that for the model considered ampli-

fication over a wide band of frequencies is not practical.

Publication of this technical documentary report does not

constitute Air Force approval of the report's findings or conclusions.

It is published only for the exchange and stimulation of ideas.
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L INTRODUCTION

The presence of fast and slow space-charge waves on an

electron beam as shown by Hahn and Ramo 2 has led to the exten-

sive investigation of their properties. Several authors 3-6 have

predicted the existence of space-harmonics of the space-charge

waves when an electron beam passes through a periodic field due

to a stationary structure. Staprans and Mueller 7 , 8 have experi-

mentally verified the existence of these space-harmonics and

Mueller 9 has described their consequences in electron tubes.

Recently Mueller 10 has extended the analysis to space-time

harmonics which occur when an electron beam is passed through

a moving structure so that the beam sees a moving periodic field

due to the moving structure.

The purpose of this report is two-fold: First, to illustrate

an application of space-time harmonics in an electron beam tube

and second, to derive expressions for the amplitudes of the space-

time harmonics where the moving structure is itself an electron

beam. An experimental tube was designed to amplify high-fre-

quency signals (for the particular tube, 24 Gc.) over a fairly

large bandwidth. A large class of tubes requires a slow-wave

structure such as a helix so that the electromagnetic wave may

have an axial phase velocity very nearly equal to the dc velocity

of an axial electron beam. The dimensions of the slow-wave

circuits become smaller as the frequency is increased, resulting

in structures which are often difficult to fabricate. Unlike this

class of tubes, in the experimental tube using space-time har-

monics interaction occurs in a smooth cylindrical waveguide which

for higher frequencies is simply made smaller in diameter, a

feature making the experimental tube potentially practical for

high-frequency operation. Some tubes have a narrow bandwidth,

for example, the two-cavity klystron, while other tubes such as

the TWT are capable of operating over a broad band of frequencies.

Manuscript released by authors March 14, 1962, for publication as
an ASD Technical Documentary Report.
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The experimental tube using space-time harmonics is of the latter

type, that is, interaction between a harmonic on the beam and a

mode in a waveguide may occur over a wide range of frequencies.

Unfortunately, the experimental tube failed to work,

apparently due to the small amplitudes of the harmonics, as dis-

cussed in detail in Section IV. C.

The report is presented in three sections. First, a qual-

itative discussion of the operation of the tube is given and its be-

havior is compared to an ordinary TWT. The purpose of this

section is to present a graphic picture of the operation of the tube

and to introduce the space-time harmonics. Second, the proper-

ties of these harmonics are presented. Third, a quantitative

discussion of the tube is given, in which the amplitudes of the

harmonics are estirated and some of the experimental methods

and results are presented. In addition to deriving an explicit

formula relating the velocities of the two beams and the frequencies

f the two electromagnetic waves special attention is given to the

limiting perveance of the beams in the cylindrical waveguide.

Although the tube was designed to operate using the space-

time harmonics of space-charge waves it may also operate in an

entirely different manner, by considering one beam as a periodic

structure through which the electromagnetic wave travels. To

oomplete the discussion of the experimental tubes, this latter

mode of operation is briefly considered in the Appendix.

I

IL QUALITATIVE DESCRIPTION OF THE

EXPERIMENTAL TUBE

A. Physical Description of the Tube

Figure 1 shows the various elements within the tube and

gives the dc potentials on the elements. A weak electromagnetic

signal is fed in one end of the cylindrical waveguide, interacts

with a harmonic as it travels down the guide, and leaves at the

far end of the waveguide.

-2-



The second electron gun produces a hollow beam which

passes successively through.a helix and cylindrical waveguide to

the collector as shown in Fig. 1. The hollow beam travels in

synchronism with the circuit wave on the helix so that as it leaves

the helix it has become bunched, i. e., the slow space-charge

wave on the hollow beam is excited and amplified. The function of

the helix is to bunch the hollow beam (not to amplify the electro-

magnetic waveon the circuit) so that when the hollow beam later

passes through the waveguide it is bunched.

The first electron gun produces an inner beam which passes

successively through the second gun,. the helix, and the cylindrical

waveguide to the collector. Unlike the hollow beam, the inner

beam does not interact with the circuit wave on the helix because

the inner beam is traveling much faster than the synchronous

velocity, having been accelerated by the anode to cathode voltage

of the first gun in addition to the anode to cathode voltage of the

second gun.

Therefore, in the cylindrical waveguide a bunched hollow

beam is moving rather slowly, an inner beam is moving much

more rapidly, and an electromagnetic wave has an axial phase

velocity greater than the speed of light. The electromagnetic

wave is the signal to be amplified and it is a TM0 1 mode. One

way of analyzing the interaction 6fthe holl.wbea&m, inner beamand

TM.0 1 mode is 'to break the-interactioninto two steps'- first, the buhched

hollow beam interacts -with the inner beam to-satisfy the requirements

for. the existence of a-set of ha.rmoncia on the inner beam;.secoiad, one

of the harmonics is picked out, the -iharmomic for example, and itis ex-

cited by and interacts.with theelectromagnetic wave. (The inte.raction

betwen the elct tic-wavetraveling down the cylindrical 'wave-

guide a:nd'the -1 hrnonic.isvery siniflar" to-the interaction of.the circuit

ive ona. helixandthe slow.* pace-charge -wave on an electronboamin

the ordinary T WTI.To summarize, the bunched hollowbeam interacts with

the inner beam producing conditions for harmonics on the inner

beam and one of the harmonics interacts with the TM 0 1 mode

resulting in gain .(in a manner similar to a TWT).

-3 -



k-
0

U

tja

41

'41

4"'
U U

00
4) 0 )

> 4
o

4"4

44 E



B. Representation of the-Harmonics on w-P Diagrams

This interaction between the two beams and the TM 0 1

mode relies on some of the properties of the harmonics, or as

they should be more completely called, the space-time harmonics

of space-charge waves. The tube illustrates one means of setting

up the conditions for their existence, namely, by using two beams,

one passing through the second (a bunched beam) with a dc vel-

ocity different from that of the second beam. It also illustrates

a method of exciting the harmonics, with a TM01 mode in a

cylindrical waveguide. In a qualitative way ca-P diagrams show

the properties of the harmonics which permit interaction of an

electron beam with a wave traveling with an axial phase velocity

greater than the speed of light. Figure 2 compares the harmonics

with the slow and fast space-charge waves. In Fig. Za is shown

the ordinary slow space-charge wave (the dashed line indicates

it has negative kinetic energy 7 ) and the fast space-charge wave

(the solid line indicates it has positive kinetic energy). Figure

2b shows a set of harmonics which are seen to occur in pairs,

each pair consisting of a negative kinetic energy wave and a

positive kinetic energy wave, and each pair identified by an integer

n. The two waves corresponding to the n= 0 harmonics appear

similar to the ordinary space-charge waves of Fig. Za, as indeed

they are, but they are different in that the amplitudes of the har-

monics are different from the amplitudes of the slow and fast

space-charge waves, information not shown by an w-3 diagram.

The w-A diagrams show the dependence of P on w graphically, a

relation derived later analytically as Eq. (2.26).

In Figs. 3a and 3b the ca-A diagram for a set of harmonics

and the TM 0 1 mode in a cylindrical waveguide are superimposed.

In Fig. 3a the dc velocity is such that the -1 harmonic interacts

with the TM0 1 mode while in Fig. 3b the dc velocity of the beam

is decreased and the -2 harmonic interacts with the TM 01 mode

-5-
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at the same signal frequency. These diagrams illustrate graph-

ically the interaction between the inner beam and the hollow outer

bunched beam by the set of parallel lines representing the space-

time harmonics. The region of interaction of the TM 0 1 mode and

a harmonic on the inner beam is also shown on the w-P diagram.

C. Relative Amplitudes of the Harmonics

One feature of importance the w-P diagrams do not show

is the relative amplitudes of the harmonics; the reason the ex-

perimental tube failed to work was that the amplitudes were not

large enough. To clarify what is meant by the amplitudes of the

harmonics, the experimental tube can be compared with the or-

dinary TWT. For small signals the total charge density of the

electron beam of the 1WT is usually divided into an ac term P and

a large dc term pO so that the total charge density is given by

PT O P0 '+ p  (2.1)

The velocity and current of the beam may.in a similar manner, be

divided into dc and ac terms. For a 'TITwhere only the slow

space-charge wave is excited the total charge density has the form

PT = PO + Ip] e3(Pz) (2.-2)

In a beam which is split up into harmonics the correspond-

ing equation for the charge density has the form

PT P+i 2IPJn )e (2.

where in each pair of waves corresponding to an integer n only

the wave of negative kinetic energy is excited and the wave of

positive kinetic energy is not excited and hence omitted. Com-

paring Eqs. (2. 2) and (2. 3) one notes that the amplitude of the

ac charge density of a harmonic is proportional to a Bessel func-

tion of-order n with argument L . )/(Zw), while the amplitude

-8-



of the traveling-wave tube's ac charge density does not depend

on any Bessel function. In the experimental tube the value of the

Bessel function for n= 1 was approximately 10- 4 so that the ampli-

tude of the harmonic was vanishingly small, a value determined

after the tube was built (see Sec. IV.. C).

I. THE SPACE-TIME HARMONICS OF SPACE-

CHARGE WAVES
1 0

A. , Frames of Reference

The experimental tube described in the previous section

is an example of a specific application of the space-time har-

monics. The harmonics will be approached from a more general

point of view to explain not only the operation of the experimental

tube but to provide a basis for possible modifications of the tube.

In this section equations are developed for transforming

quantities such as w. and A from one frame of reference to another

and a particular frame of reference is chosen which simplifies

the calculations. In later sections restrictions are applied which

lead to equations for space-time harmonics and the properties of

these harmonics are then considered with special attention to

their applications to electron devices. It is shown that the nth

harmonic will consist of a pair of waves which has many of the

characteristics of the fast and slow space-charge waves.

Two frames of reference shall be used: A stationary sys-

tem. denoted by X and a system X ' moving at a velocity v w with

respect to X. The position (x,y, z) and time t in system X can be

related to the position (x', y', z') and time t' in system X' by the

Lorentz transformations" 1 as follows

z= k(z'+ vWt) wk= 1 3.1)}

t ~'v 31- (vw/c) 2

t = k(tl + --w z 1)/ -( C

c

-9-



From Eq. (3. 1) the velocity v in X can be determined when

the velocity vI in X' is given as follows

dz k(dz'+v dt') V' +v
wV-'v- (3.}2)

k(dt' + -w dz) 1+

c C

By rearranging Eq. (3.2) the velocity v' in X' in terms of

v in X is givenas

v, w (3.3)
v v
w

c

The amplitude and phase of a wave are invariant under

transformation so that

A e j ( wt - z) = A' ei ( co' t ' - A VZV) (3.4)

A= A' (Wt - PZ)= (01t -A z '1)

From the above equations the frequency u in X in terms

of quantities X' is
v

w = kwl (1+ v-r- (3 .5)

These equations transform a wave from one frame of ref-

erence to another. Of particular interest is the transformation

of the harmonics of space-charge waves. Therefore the additional

relation
I () (3.6)

is useful. The plasma frequency is W = .0 andre is the

velocity of the beam as seen by an observer in.-'. For rela-

tivistic velocities p is the charge density in a system traveling

with the electrons.

The frames of reference are introduced to simplify the

discussion of the class of tubes which have a beam moving along

- 10-



the z-axis with a dc velocity i with respect to the laboratory ande
also have a structure moving at velocity vw in the z direction.

The laboratory is chosen as system X. The system X' is chosen

so that the structure appears stationary to an observer in X1, i. e.,

X' is moving with the structure at a velocity vw with respect to

the laboratory. At this point it is not necessary to specify just

what the structure is, and to achieve generality the discussion is

not limited to just one structure. (One possible structure is the

hollow bunched beam of the experimental tube.)

As yet no restriction has been placed on vw. If vw is

positive the structure moves toward the collector and if vw is

negative the structure moves towards the cathode. In the special

came where vw is zero, the structure is- stationary with respect

to the laboratory and systems X and X are identical. To an ob-

server in X' the beam will have an apparent velocity

v -ve w (3.7)

vv
e Zw
c

which follows directly from Eq. (3. 3).

To summarize, in this section formulae have been de-

veloped for transformation of waves from one system to another,

where system X is the laboratory frame of reference and system

XI is moving with the structure.

B. Restrictions on the Structure

Provided three restrictions on a structure are satisfied,

a beam may have space-time harmonics as it passes through the

structure.

First, the structure must move at a velocity vw which is

not equal to the velocity of the beam v e . This condition states

that

- 11-



in systemX: v - Vw (3 8)

or in system X':v e 4 - 0

One special case of interest is for v w to equal zero, i. e., for the

structure to be stationary.

Second, an observer in X1 (moving with the structure)

should see a periodic variation in the voltage along the axis of the

tube due to the fields on the structure. Let L' be the periodof the

spatial periodicity and A 9
0 be the voltage due to the structure so

that in X'
A A

b(Z-') = &Vb(z'+ L') (3.9)

Since this voltage is periodic it may be represented by a Fourier

series, so the special case of a sinusoidal variation is of interest:

A I~z) = AV, sin (3.10)
A

Third, the magnitude .of A' should be less than V; where

Vbis the voltage through which the beam is accelerated by the

electron gun (v = 4Z-nq ). That is.
A

A < (3.11)
Example 1.

In Fig. 4 is shown a structure which satisfies these three

conditions. A stationary set of apertured disks is arranged so

that the beam may pass through the center of the disks. Voltages

on the disks are adjusted so that on the axis of the tube there is

essentially a sinusoidal voltage variation, due to the disks. Figure

4 illustrates one method of meeting the requirements necessary

for the existence of the harmonics but it does not show a com-

plete tube as no method of exciting the space harmonics or of

amplifying them is shown. (Analogously an .ordinary beam in a

drift tube does not necessarily have a slow space-charge wave on

it. It is necessary to pass the beam through a modulating circuit

- 12 -
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Fig. 4 Electron beam through a series of apertured
disks

- 13-



such as a helix or across a gap of a cavity to actually excite the

waves. ) If the set of apertured disks are stationary then vw is

zero. This special case is distinguished from the more general

case where vw is not necessarily zero by calling the harmonics

space harmonics. (Space harmonics are a special case of the

more general space-time harmonics,)

Example 2.

Figure 5. shows another structure which satisfies the three

conditions. An outer hollow beam has been bunched and surrounds

an inner beam. In this case the outer beam can move with a

velbcity faster or slower than the inner beam but by the first re-

striction it cannot move with exactly the same velocity as the inner

beam. (In the experimental tube considered in Sec. I the outer

hollow beam moved slower than the inner beam due to the arrange-

ment of the electron guns (see Fig. 1). The experimental tube is

a special case of the example considered here. ) The field due to

the bunched hollow beam results in a periodic variation in the

field along the z-axis and hence VI along the r--axis. As seen by

an observer in X' (moving with the bunched beam) the variation is

stationary and does. not change with time, while to an observer in

X (the laboratory system) the pattern appears to be moving slightly

slower than the dc velocity of the hollow beam. Figure 5 illus-

trates a method of meeting the requirements for the existence of

space-time harmonics but it does not show a complete tube as no

method of exciting the space harmonics has been indicated. (One

method to excite the harmonics is with a TM 0 1 mode as in the ex-

perimental tube.)

The above examples have been given to illustrate the three

necessary conditions for the existence of space-time harmonics.

- 14-
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C. Space Harmonics of Apertured Disks

The phase constants of the space-charge waves are given

by W+W
P (3.12)

e
where V = is the dc velocity of the beam.

But if the beam is passing through a structure which has a

periodic voltage along the axis -as given by Eq. (3.9) then the above

equation must be modified.' For the special case where the peri-

odic voltage is sinusoidal then

P(Z) = P (3. 13)

where
A 1
~~ Zwz O 2z-v ~ ~ , e.V .Z =. -/.q(O-A inL)Ve( i

V
0

There is an additional term in the above equation due to

the periodic voltage on the axis. IfA <V0 then by discarding

higher powers of AV 0 II 0 one gets

W+ 1 4VO . Zwz
P= ---. (l + . r sin- (3.14)

e V 0
or

sinwz
where W+L

e 2 V0
For Eq. (3.14) to be finite it is necessary that 1 . 0.

e

This is the first restriction on the structure considered in Sec.

B. It implies that Vw =0 Ve' that the beam moves at a different

velocity than the structure.

For small-signal analysis the charge density, velocity,

and current of the beam may be divided into.dc and ac terms.

Therefore,

- 16 -



jwt- z p(z)dzji T= io0 i=io 0 Ill e (3.15)

Hereafter the dc term will be neglected, a procedure which is

justified for small signals. (Note that if AV- I V0 then the prob-

lem would be outside the range of small-signal analysis. This is

the reason for the third restriction on the structure. Also if
A -

AV 0 S V9 it would not be possible to discard higher order powers

of AV/V0 as was done in Eq. (3. 14). ) The ac portion of Eq.

(3. 15) is

c i= 0n (3. A s)

In the above equation note that an integral is necessary

since (Z) is a function of z., This is similar to replacing .at

by t c(t)' dt in frequency modulation.
0 A mathematical identity states that

• J(1-r )e
n

CD (3.17)

Using this identity the ac current may be written.as a

series of terms:

i=IiI n . )ei((t. Oz - (3.8)
=~ -C

This is the fundamental equation for the space-time har-

monic current. Each term in the series is a harmonic. For ex-

ample, an equation which completely describes the ac current

density of the -1 harmonic is
j ( w t - o z +  --m "

ig Ii l ("0 ) 2 L. (319)

The .derivation of the harmonics proceeded directly from

Eq. (3. 12) rather than starting from Maxwell's equations. In the
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derivation the three restrictions in the mathematics correspond

to the three restrictions that were placed on the structure. In

Sec. B these three restrictions are stated without being justified,,,

but in this section it becomes clear that they are necessary if one

is to have harmonics. Thus these. restrictions provide a useful

criteria for evaluating structures proposed for space-time har-

monic amplification.

The current variation consists of an infinite number of

space harmonics whose amplitudes are given, by various order

Bessel functions. Note that the complete sum of all the space

harmonics together make up the current variation.. Hence these

space harmonics are sometimes called "partial" waves. For

brevity two equations have been written as one. That is, P0 =

+ W means Po = (w+w )/v and pO = (w-•)/ Equation

(3. 18) written out as two equations would be

LAV0 w + P ) j(Wt - pn.Z)
in-j j  3n 4( v  -P )  (3.20)
in = I n 4w V e

= IM-0 -o 0 e -

where

P + .--fiLAV 0  Aw- P jtp a)

M-on 4wV o .e p(2)

Cwhere

p ye L

Equation (3.21) corresponds. to all harmonics which have

positive kinetic energy and. Eq. (3.20) to all. those that have nega-
13

tive kinetic energy. The practical result is that it is possible

to .excite only the positive or the negative set (just as it is possible

to excite only the fast or the slow space-charge wave). However,

the above equations show that the waves of each set are related.

That is, suppose that Ji n is replaced by 2 .ln but that A remains
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unchanged., Physically this means. that we amplify- the -I. space

harmonic which haw. negative kinetic energy -- which is the came

in the experimental tube., Then. the mathematical identity (Eij!

3.t 21), requires. that all the other negative-kinetic-energy space

harmonies and the left-hand side of the equation be.doubled., That

is, the amplitude of one harmonic will' not change unleas the am-

plitudea of all, harmnonies with the same kinetic energy change in-

the same ratio, provided p. remains unchanged.

The amplitudes; of these space, harmonics caiL be comn-

pared with the sidebands of frequency modulation. By a proper

choice of the argument. one can make the amplitude of any bar-

monic go tozero. Actually this happens.-at the zeros, of the. Bea-

sel functions, i. e., the first harmonic goes: to, zero when

(L.Aft/Zv) has a value that makes I I(L.apI2) zero- Clearly, if

one is interested in amplifying, a specific harmonic, low values

of its amplitude are. avoided. (The best argument to choose to

amplify a harmonic is found by differentiating the corresponding

Bessel function. and setting the derivative eqjual to zero.)

There is another useful feature which can be drawn from

frequency modulation to understand the nature of space harmnonics.

In FM one convenient way to represent the sidebands is by a

frequency spectrum of the wave. In a simila r manner one can

represent the space harmsonics by a. "1P spectrum". The analogy

between , space harnmics and sidebands is shown in Fig. 6.

In the experimental tube the argument (Lt~pIZv) was far

from the optimum value described above. Other factors in the

tube, primarily the low plasma frequency of the hollow beam,

resulted in a very low value of the argument.

A relation between P and w is also given by Eqs. (3. 20)

and (3. 21). Noting that w= V I one has
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2W

harmonic n= 0 is zero.

Fig. 6 Amplitudes of space harmonics
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This relatita can be represented graphically by- an w-f diagram

as shownL in Fig- 2b.
In conclusion, three important properties ot the harmonies

are:

First, if ftfz) remains unchanged, the amplitude of one
harmonic with, negative kinetic: energy-wilt not change unless the

amplitudes of allj the harmonics with negative kinetic energy

change in the same ratio. A similar statement is true for posi-

tive kinetic energy- waves-

Second, the magnitude of the n.th harmonic is given. by a
Bessel function of order n. with argument (L&FIZv). One graphic

representation of the amplitudes is provided by a jS spectrum as

in Fig. 6.
Third, a relation. between w and P can be graphically ex-

pressed by- an. w- F diagram or can be found from Eq. (3. 22).

D. Transformation of Space-Time Harmonics

For the special case v- 0, i. e., the structure is station-

ary with respect to the laboratory,, an example of which was the

set of apertured disks. discussed in Seca. B and C, the transfor-

mation, front system X to XI merely consists of adding prime* on
all the quantities v, w, ft 0, z and L which appear ini the equa-

tions of Sec. C. For v= 0 it makes little difference whether one
derives the equations for the harmonics in system X or X'.

But if v 4=*0 then it is much easier to derive the equations

for the space-time harmonics in system XI and then transform
them by, the equations of Sec. U. B into system X rather than

attempting to derive the space-time harmonics directly in system

X. The material on space harmonics in Sec. M. C has been con-

sidered for the special case vw = 0, whereas space-time harmonics

&rise for any value of v.

vW*0 implies a moving structure and XI is the one fram
of reference which moves with the structure. In systemX', AVY0
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is a function of z only and not of t, that is, the periodic voltage

appears stationary in space. For example, an observer moving

with nearly the dc velocity of the bunched hollow beam in the

exp4rimental tube sees a stationary periodic space diatribution

of bunched electrons. To be concise, replace all quantities in

Sec. C by their primes, e.g., Eq. (3.18) becomes

CO ll LIOj(w' t'- 'z')=-Ci,= w _i,_[ n 3.23

where
='n Pn = 00 + '

and the rewritten. equations will give the space-time harmonics in

system X'.
As all measurements are made in the laboratory frame of

reference ];it is desirable to transform the equations from the

moving system X' to system X. This is accomplished by using

the .Lorentz transformations in Sec. A to get, for instance,

wn =w +  =w + + (1- ) n w  (3.-24)

e vw

Figures 7a and 7b show a graphic representation of these

relations between w and P byz an w- 0 diagram. In Fig. Ta is shown

the system X' moving at velocity v w . The signal is excited on one

harmonic at point A. In Fig. Tb the same spectrum has been

transformed by Eq. (2. 26) to the laboratory frame of reference,

system X. Since the waves of like kinetic energy are all related,

if one is excited so are all the others. But note that the signal

appears at a different frequency on the different harmonics as seen

from the laboratory frame of reference. This leads to the possi-

bility of frequency conversion, by placing the signal on one har-

monic at the frequency wo, and removing it from another har-

monic at frequency w 2*
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-2 n=-l n= O

-4r ,-zw 0 2w

L L Lr
w-P diagram as seen by an observer moving with the system
X'. (1ote that in each pair of harmonics only one wave is ex-
cited. This corresponds to the special case of the experi-
mental tube.)

Fig. 7a System X moving at velocity v w

. n= n= 0 n= I n= 2

wlw

"- 2w 0 2w 4w

-;p diagrm for the same set of harmonics as in Fig. 7a
but now seen by an observer in the laboratory frame of
reference.

Fig. 7b System X Nonmoving
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Another application, of space-time harmonics would be to

excite a harmonic at frequency w and then.amplify at a lower

frequency w of another harmonic, since the signal will also ap-

pear on this harmonic, and finally, since all the harmonics have

been amplified, to remove the now amplified signal at frequency

wio That is, a high-frequency signal is.amplIfied by a low-

frequency source.

Therefore, one additional property that space-time har-

monics have when. v 0 is that the set of harmonics whick are

excited as a group will have signals at different frequencies as

given explicitly by Eq. (3.24). However, in the experimental tube

use was not made of this particular property.

In the experimental tube, vw #0 as the dc velocity of the

hollow beam corresponds to -vw, i. e., system X' moves with the

hollow beam. Therefore, a. rigorous analysis would require the

use of space-time harmonics rather than the simpler space har-

monics. However, in the experimental tube no use is made of

properties of space-time harmonics which.are not also properties

of space harmonics, since if vw is small compared with the

velocity of the electron beam passing through the structure, v

v << Ve, then to a first approximation the harmonics may be

considered to be space harmonics.

IV. QUANTITATIVE DESCRIPTION OF THE

EXPERIMENTAL TUBE

A. RF Transmission;

Figure 8 shows the RF circuit for the signal. The pur-

pose of this experiment was to determine if a signal could be

coupled from a TEI0 mode in a rectangular guide to a TM0 1 mode

in a cylindrical guide and then in turn to a TE mode in a rec-

tangular guide without excessive loss. Since the measurements

were made before the waveguide was placed within the glass

envelope, the opening between the rectangular and cylindrical

waveguide could be blocked and then unblocked to determine the
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portion of the signal traveling through the tube. Transmission

was adequate so that the coupling from the rectangular guide to

the cylindrical guide did not have to be modified. The insertion

loss was 20 db.

A TM 0 1 mode of 24-Gc is 1. 3 times the cutoff frequency of

the waveguide and the coupling of the fields from the rectangular

guide to the cylindrical guide is shown in Fig. 8, resulting in. ex-

citation of the TM 0 1 mode within the guide. Higher-order modes

are below cutoff and thus do not propagate.

B. Bunching of the Ouxter Beam

The purpose of the helix is to bunch the outer hollow beam.

A helix of any convenient pitch may be chosen. The hollow beam,

having a dc velocity slightly slower than the axial phase velocity

of the 2. 4-Gc signal on the helix, is bunched as it passes through
the helix. Due to a difference of potential betweenthe end of the

helix and the cylindrical waveguide, the bunched beam is slowed

down and more tightly bunched as it enters the waveguide. Choos-

ing a rather coarse helix results in a large range of possible

values for the dc velocity of the beam as it passes through the

helix, but the dc velocity of the hollow beam as it enters the

cylindrical waveguide (a velocity made as small as possible) is

simply controlled by adjusting the potential between the helix and

waveguide. Thus the dc velocity of the hollow beam within the

helix is.determined by the pitch of the particular helix but the

pitch may be any convenient value;

I. Velocity jump between helix and waveguide

There exists a velocity jump between the end of the

helix and the beginning of the cylindrical waveguide which slows

down both the bunched hollow beam and the inner beam. The

velocity jump serves the twofold purpose of decreasing the.dc

velocity of the hollow beam and decreasing the distance between

space-charge bunches of the hollow beam. After passing through
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the helix and. velocity jump the hollow outer beam is tightly

bunched, and the period L is small. Inside the cylindrical wave-

guide the inner solid beam moves rapidly through the tightly

bunched outer beam.

2. Hollow beam in velocity-jump region

Figure 9 shows an idealized. hollow beam as it travels

through the helix, velocity-jump region, and cylindrical wave-

guide. A string of charge bunches moving with velocity 0H and

with period L.j leaves the right end of the helix, is slowed down

by the electric field between the helix and waveguide, and pro-

ceeds with a decreased velocity V02 and a smaller period L. The

time between the arrival at the waveguide of the successive spike

bunches is t= L/V 0 2 , and the time between the departure at the

helix of two successive bunches is given by tH= LH/%0H. The

same number -of bunches must arrive at the waveguide as leave

the helix; therefore, the two times t and tH must be equal, so

that

L= v 0 2  (4.1)
vOH

This same equation holds for the actual hollow beam as

well as the idealized beam to a first approximation (i. e., lens

effects are neglected) provided the dc velocity of the beam as it

arrives at the waveguide is large enough so that the perveance is

less than the limiting perveance. The period LH is given by
v OH

LH=> X vO (4.2)

where )p is the plasma wavelength of the hollow beam and fH is

.the frequency of the electromagnetic wave on the helix (2. 4 Gc).

By combining Eqs. (4. 1) and (4. 2) the periodicity for the bunched

beam within the cylindrical waveguide is
v 02

L = (4.3)
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Fig. 9 Idealized Hollow Beam

- 28-



This equation shows that the period L may be made small by

slowing down the outer beam so that it has a small velocity V-

within the waveguide. The tightly bunched hollow beam sets up a

periodic voltage on the axis, and the first component of the Four-

ier representation of the periodic field is the term AV 0 sin = •

That is, the hollow beam is the structure which sets up a periodic

voltage on the axis. There are assumed to be no harmonics on the

hollow beam.

3. Inner beam in velocity-jump region

There are harmonics on the inner beam at the right

end of the helix, in the velocity-jump region, and within the

cylindrical waveguide, since the inner beam is passing through a

bunched outer beam, and the three restrictions on the structure

discussed in Sec. m.B.are:*sati;sfied. At the left end of the helix

there are no harmonics as the inner beam passes through an un-
A

bunched outer beam. The magnitude of AV 0 increases from zero

to a maximum value as the hollow beam becomes bunched.

By the time the inner beam reaches the right end of the helix, the

inner beam is passing through a bunched beam and has harmonics.

Figure 10 shows the space-time harmonics on the inner beam at

the right end of the helix and at the entrance to the cylindrical

waveguide. Note that the slope of the harmonics is decreased

owing to the decrease in the dc velocity of the inner beam but that

the most important change is .due to the decrease in the perio-

dicity from LH to L. This radical change in the periodicity is

the reason for introducing the velocity-jump region.

As seen from the w-P diagram in Fig. 10, the region of

interaction between the -n harmonic and the TM01 mode is near

the w axis, so that to a first approximation n may be set equal

to zero:

27rw
Pn- Po+ L-' (

- 9e e
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v n
or Lw= e (4.4)

f

By combining Eqs. (4. 4) and (4. 3)

f • (4.5)

T--- = - T--

where f is the signal frequency (about 24.-Gc), fH is. the frequency

of the helix wave (about 2. 4 Gc), Ve and V02 are the dc velocities

of the inner and outer beams, respectively, within the cylindrical

waveguide. Equation (4. 5) is a fundamental equation because it

explicitly shows how a high frequency signal f is related to the

beam velocities and a much lower frequency.f H of a wave on the

helix.

Note that for high-frequency operation Eq. (4. 4) indicates

that the periodicity -L must be as small as possible.

It has been assumed that ft is zero at the point of inter-

action. For the interaction to occur where *n is not zero the

formula corresponding to (4.5) is

'702 f  02 Pn
nfH + 02e 2 (4.6)

which reduces to Eq. (4. 5) when pn is zero. In the experimental

tube the Actual values would be only slightly different than those

calculated by Eq. (4. 5) so that the more exact. Eq. (4. 6) need not

be used.

Equation (4. 5) suggests that by leting, 02 approach zero

the ratio f/fH -4 o, which implies that a very.-high-frequency

signal could be amplified by a very low frequency on the helix.

What prevents this state of events from being realized is the

limiting perveance of the hollow beam within the waveguide,

which limits both the values of 02 and w p that can be obtained.

4. Ideal bunching

The bunching of the hollow beam in the helix is non-

linear. An approximate estimate of the amount of bunching may
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be obtained by measuring the power gain of the helix wave by

measuring the difference of the power of the electromagnetic

wave as it enters and leaves the helix (taking into account circuit

loss). This difference can be assumed to have been extracted

from the hollow beam as the slow space-charge wave is excited

and amplified. By measuring V0H and fH the period -LH is found

by Eq. (4. 2). From these measurements a general idea of the.

actual amplitude and period of the charge bunches on .the hollow

beam as it leaves the helix is obtained.

To calculate the amplitudes of the harmonics, it will be

assumed that the beam is bunched in an optimum manner for ob-

taining harmonics, which is better bunching than the actual case

discussed above. The idealized case is shown in Fig. 9. In the

cylindrical waveguide a Fburier analysis of rectangular pulses

of charge density gives

O sin~nw 2wnz
P - P02 + 2p02 I +nw sin (4.7)

r~l
sin +nw

The term snn will approach a maximum value of 1 as + ap-

proaches zero, i. e., the width of the charge-density bunches. de-

creases, leading to spikes of space-charge in the limit. This

gives a maximum value for the terms in the series.

In the experimental tube, the hollow beam cannot be

bunched in this manner, and even for efficient bunching Zp0 2 .

= Pm would probably lie between p0 2 /2 and 2po. How-

ever, in Sec. IV. C the beam will be assumed to be a series of

spikes of charge density with a corresponding value of pm= 2P02.
Using this optimum value will give the largest possible value for

the amplitudes of the harmonics on- the inner beam, an uppe

bound which may not be exceeded.

The purpose of the tightly, bunched hollow beam is to pro-

vide a periodic voltage on the axis of the tube. From the optimum

value of pm the magnitude of 0 can be calculated by first
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calculating the E field on the axis, using V. Z = "P, and

--=Z where b 2W If the electric fields we -.- = -=' _R M

only in the z direction, Z would bd given by E=--. m The

tIAUVE~4 ~1~d~.i bacylinMtricl d.a.t Auocoad-

b: using.:bI pias : ;riqaq.d.cy .:redction. factor .R; E ifi:-
giten by "

E R2 PM

E= °' b

a AV 0 (z)

Since E .= = J ObAV 0 , therefore

A R2 Pm R2 p mL2

AV0 = m 4 2 a (4.8)

This is the perturbation of the voltage on the axis due to the ox-
timum bunched hollow beam, i. e., the least upper bound of AV 0 .

C. Amplitudes of the Harmonics for the Experimental Tube.

From Eq. (3. 18) it follows that

lini = (.9)

ji n' 2w

gives the normalized amplitude of the n t h harmonic, i. e., it gives

the ratio of the amplitude of the ath harmonic to the sum of the

amplitudes of all the harmonics. The argument of the Bessel

function may be written as the product of two terms, one involving

the inner beam and the other term involving the bunched beam:
Po ^

=(- )(LAV0 1  (4.10)2w 0*Y

Using Eq. (4. 8), and the following auxiliary relations:
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2 1r Pm R
2

2 R 0

Equation (4. 9) can be written as

w ? 2 
31A L( p J[*Z Wb ]O (4.11)

This gives the argument for a beam bunched in the optimum

manner described in Sec. IV. B.

The argument can now be calculated for typical values

obtained from the experimental tube (assuming in addition a spike

beam)

v 0 2 = 200 volts for beam 2

0. D. = .320 mils

= 24Gc I.D. = .120mils2 w

R= .95

H 2. 4 Gc K= 15 I pervs.
2w 10 =42.4xlQ 3 amp

Wq = 1.46 Gc.
q2

so that .L .. x1 4 .

ZW

in[

jil n 2w

0 N I

1 4 x 10 - 4

2 .1 x10
-8

This table shows that the amplitudes of the first and second

harmonics. are very small compared to the amplitude of the

zeroth harmonic, even for the spike beam which gives an upper

bound. In the limit when the argument goes to zero all the har-

monics are zero except the zeroth one which has an amplitude of

one, i. e., the space-time harmonics reduce to the ordinary fast
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and slow space-charge wave as -- 0. This is just aboUt

the case for this tube, which is not at all desirable since for

appreciable interaction L should be about 0. 1, not . 4x10 4

The reason for this low value is that wq2 is small compared to w

and p, has about the same magnitude as p (see Eq. (4. 11) ). The

low value of the plasma frequency w q2 is due in turn to the limit-

ing perveance of the hollow beam in the waveguide.

Figure 11 shows the perveance of the hollow beam within

the waveguide as a function of the dc voltage of the beam. The

measured values of current and voltage indicate the perveance

has a peak value of 28.4 R pervs which is the same as the limit-

ing perveance calculated from the dimensions of the hollow beam

and the waveguide.

Figure 12 shows that the cathode and collector current

rapidly fall off as the voltage is decreased from the value corre-

sponding to the limiting perveance. This indicates that due to

the -depression of potential across the hollow beam inner electrons

are being returned to the cathode.

The major reason why the tube failed to operate is that a

dense beam is required, which was not physiclly obtainable since

only a limited amount of current at a given velocity may pass

through the cylindrical waveguide. The actual charge density of

the hollow beam in the experimental tube results in low values of

all the space-time harmonics except the zeroth harmonic. At-

tempts to increase the plasma frequency are not possible

in the experimental tube because the limiting perveance of the

beams within the waveguide may not be exceeded.

Unfortunately, the necessity of having anexceedingly dense

beam was not recognized until after the experimental tube was

built. The perveances were calculated from measured values of

voltages and currents, the outer beam shown to be bunched, and

there was transmission (no gain) of a 24,-Gc RF signal through

the circuit. Using the measured values and the assumption of a
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Fig. 11 Perveance of hollow beam within cylindrical
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"spike beam" an upper bound was then calculated by.JL Carlile,

as shown on the previous pages.

The calculation of the amplitudes implicitly assumed

W>>Wq2 as is the case for the experimental tube.. If w approaches

Wq2, Eq. (3. 18) is not valid as AV 0 X V0' and for an exact analysis

Mathieu functions are required. The use of Mathieu functions for

space harmonics 8 ' 9 can be applied to the space-time harmonics

to determine the amplitudes of the space-time harmonics over an

extended range of signal frequencies.

D. Amplitudes of Space-Time Harmonics

In Sec. IV. C the amplitudes for the experimental tube

were calculated. In this section a general equation for 'the am-

plitudes of space-time harmonics is. derived. The advantage of

this general equation is that the variation in the amplitudes as a

function of the signal frequency. is explicitly stated. Using the

equation the amplitudes of space-time harmonics can be. calcu-

lated for amplifiers designed to operate at millimeter wavelengths.

For a TM 0 1 mode in a cylindrical waveguide the relation

between w and 0 is the hyperbola

.p+ - -k
z  (4.1l2)

"c .

The relation between w and A for space-time harmonics is

the straight line

+'- + ZWn 
(4.13)

e

For each integer n there is a fast and a slow space-time

harmonic. The TM 0 1 mode carries positive kinetic energy and

the slow space-time harmonic carries .negative kinetic energy so

that amplification occurs when there is coupling between them.

Forward-wave codpling occurs when they have the same phase
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velocity (the intersection -of the straight line and the hyperbola)

and the direction of the group velocity is the same. The group

velocity is.determined by the slope of the curves on the 4-p dia-

gram 4nd for amplification this corresponds to choosing the posi.

tive sign before the radical sign of Eq. (4. 12). (It is.also possible.

to couple between a space-time harmonic and the TM 0 1 mode to

get a BWO type interaction. The group velocity of the TN 0 1 mode

in.this case is in the opposite -direction of the harmonic and the

negative sign.before the radical sign of Eq. (4.12) would be

chosen.)

Equating Eq. (4. 12) and Eq. (4. 13) a criteria for forward-

wave interaction between the slow space-time harmonic-and the

TM0 1 mode is

-p ee
-or sic p-- e 0 =cw+w)V

+j (414
c

Since n will be negative this equation can be rewritten

2v . 1 F w 21

The amplitudes of the space-time harmonics for a spike bunching

beam were shown to have an upper bound

(![w.Z 2 Pb) 3 ]

Equation (4, 11) can be simplified by using the added interaction

condition.derived by considering the relation between w -and P,
thit is, by substituting Eq. (4. 1 S) in (4. 11) and noting that Ab

Z- to get
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2( °2

since 2 2 2

C C

the amplitudes of the space-time harmonics have an upper bound

given by

i n (4.17)

This equation .shows that as the frequency of the signal is increased

(for operation at millimeter wavelengths) the amplitude of the -I
1

space-time harmonic decreases as 1 2
(a)

For a given tube it can be seen from w- p diagrams that

the higher order harmonics intersect the hyperbola at higher

frequencies so that one method of increasing the frequency of

operation would be to use a higher order harmonic. Equation

(4. 17) indicates .that the argument of the Bessel function is de-

6-easedby*,fa-torof LI I 3 in ad4ition to the term 1/w 2 for this

type of operation.

For BWO type interaction the amplitudes of the space-

time harmonics are given by..
2

+- k 2 3
PO c

n c (4.18)

which has an upper bound

V+ -

jn(-) In ) (4.19)
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For both forward wave and reverse wave interaction

W >> W q2 and hence the amplitudes are too small for appreciable

interaction at millimeter wavelengths.

V. CONCLUSIONS

This report presents a general analysis of space-time

harmonics and the application of these harmonics to a specific

electron-beam tube. This procedure allows a physical interpre-

tation to be given to the equations for space-time harmonics, and

points out fundamental limitations of the tube with two electron

beams.

The electron-beam tube described in detail has the dis-

advantage that the amplitudes of the first and all higher order

harmonics are too small for effective interaction by a factor of
4

10 . The normalized amplitudes of the harmonics are given by

Eq. (4.17).

The above analysis can be extended to other microwave

amplifiers using space-time harmonics and provide the basis for

evaluation of a large class of tubes. Section III gives a general

discussion of space-time harmonics with respect to a single

electron beam and a structure upon which three restrictions are

placed. Intuitively the requirements placed on the structure im-

ply that it gives a moving periodic voltage on the axis of the tube.

Specific examples, such as apertured disks, serve to illustrate

various possibilities but the analysis does not rely on any specific

structure. Hence, radically different means of providing a peri-

odic voltage on the axis can be investigated.

The general analysis of Section HI leads to the fundamental

equation (3.18) which explicitly states the space-time harmonic

current in the beam. This equation shows that the current varia-

tion consists of an infinite number of space harmonics whose

amplitudes are given by various-order Bessel functions.
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A second necessary condition is that one of the harmonics

should have the proper w-p characteristics for interaction with

an electromagnetic wave.An w- p diagram for the harmonics can

be constructed from Eq. (3.18) and by superposition of the w-p

diagram of the circuit for the electromagnetic wave a method is

readily obtained for investigating possible regions of interaction.

These two fundamental conditions are interrelated. By

specifying the region of interaction of the harmonics the dc

velocity and periodicity of the beam is constrained, and these

factors enter into the determination of the amplitudes. A step-by-

step procedure for evaluating any proposed tube is outlined below:

(1) Construct an w-p diagram of the harmonics and the

circuit of the electromagnetic wave. Figure 3 id an example of...

such a diigrarn *for the *case where the circuit is'a cylindrical

Waveguide; 'This circuit has the advantage of simplicity and is

readily usable for millimeter waves. It is essential that one-har-

mionic-eia Interact .with the. wave. - Equation (4.-6) expcitly,

states this condition.-

(2) Calculate the magnitude of the periodic voltage on the
A

axis of the tube due to the structure, i. e., calculate AV0 . This

is dependent upon the particular structure chosen. (For example,

a possible structure is a hollow bunched beam which has a value

AV 0 given by Eq. (4. 8).)

(3) Calculate the amplitudes of the harmonics by combining

steps (1) and (2). If the amplitude of the harmonic of interest is

within the range 0. 01 to 1. 0, then the proposed tube will be satis-

factory. (For the dual beam tube in a cylindrical waveguide the

amplitudes are given by Eq. (4. 10). )

The procedure outlined above is followed in Sec. IV for the

idealized two-beam tube. To maximize the normalized current

ratio as given by Eq. (4. 10), the plasma frequency w q2 should be

as large as possible, but is limited by the maximum perveance
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of the beams within the cylindrical waveguide. This maximum

available value of (q2 appears to be a fundamental limitation on

dual beam tubes.

Finally, as the frequency of the signal is increased (for

operation at millimeter wavelengths) theamplitude of the -l har-

monic decreases-as l/V 2 •

In general the-amplitude of the harmonics, for the idealized

two-beam tube decrease as the frequency-increases and. this fun-

damental limitation, together with the maximum obtainable.o

indicate that this type of dual-beam tube is not practical for wide-

band millimeter wavelength operation.

APPENDIX A: HOLLOW BEAM AS A PERIODIC STRUCTURE

This appendix covers-a mode of operation for the experi-

mental tubedescribed in Secs. I- Mr which is unrelated to the

method of amplification previously discussed. It is surprising

that a tube designed to operate in one mode may also operate in

an entirely different mode. However, owing to the small value

of the amplitudes of the partial waves for the experimental tube,

operation in the new mode is unsatisfactory, as shall be shown

more clearly below. In Secs. I - I the two beams interacted to

yield conditions for harmonics on the inner beam. The tube was

-designed to utili e this interaction. In this appendix the inter-

action between beams will be completely ignored. Instead, the

hollow hunched beam is considered to be a periodic structure

which interacts with the electromagnetic wave. The distinction

between the two modes of operation is shown in Fig. 13.

The key point is to consider the hollow bunched beam as a

-periodic structure. All the properties of periodic structures

such as stopbands - and -"passbands can be applied to the periodic

bunched beam. There is. only one difference between the bunched

beam and the periodic structures such as disk-loaded waveguides
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Method 1 (1) Consider the hollow outer beam to interact with
(used in Seca. Inner beam to give a met of space-time harmonics

I-lU)on the inner beam.
Wn= -1 (2.) Then consider interaction

TM - n= 0 between one harmonic and
01 ATM mode in the wave-

-n I

10 n Z

-2W 0 2w'" 41r

Go Zwn

Method H1 (1) Consider hollow outer beam to interact
(Used in Appendix) with the TM01 mode to give a set of par-

tial electromnagnetic waves.

(2) Then consider the interaction. between
one partial wave and the slow space-
charge wave on the inner electron beam.

\IIlJ

t.slow space-charge wave

OD 0

(z) = q, 0 +-

Fig. 13 -Comparisons of methods used in Seca. I-lU and
Appendix
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*d hulic.s.tp4**/gd4 i/nter-...e elect mwbsami moWvAag .ith

respect to the laboratory frame of reference. This leads only to

a minor change for the conditions present in the experimental

tube.

As in all periodic structures, an electromagnetic wave

will consist of a set of spatial harmonics -as. it passes through

the periodic structure. Since it is impossible to satisfy the

boundary conditions with only one of these harmonics, all of them

are excited if a wave travels down the guide. This makes these

spatial harmonics similar to the space-time harmonics con-

sidered in Sec. I-3 but different from modes in ordinary smooth

waveguides which may exist singly, since each TE or -TM mode

satisfies the boundary conditions. The purpose .of this-appendix is

to find an interaction impedance Kn . To this end several simpli-

fying assumptions -are made. The mathematics is very similar -to

that of. Secs. DIU-I, but- the underlying physical behavior is-dif-

ferent. Once K is found the analysis is parallel to that used by17 n

Pierce.

The beam is replaced by a dielectric which has-a sinusoidal

variation, shown in Fig. 14. Assuming an electromagnetic wave

propagates.down the waveguide with a time dependence

ej t  (A. 1)

from Maxwell's equations-and the periodic a (z) given by

-a W* o - )'sn A <f (A. 2)

one gets the pair of equations

V2 If= W2- a (X)T .JWFb &il (CoS'Abx)*Zz x K (A. 3)

t= - 2 1b(CoS Pb2) jE 1 pb(sin P bz)
a (A. 4)
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G (z). f + A a a5inA!w
I I L

Fig. 14 Model used in method.IU of Fig. 13, where beam in
replaced by a dielectric
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Note that if Ae 1  0 the above two equations reduce to the ordi-

nary wave equations

VZ = wz E NYZ= - ,W E (A. 5)

The component of the I field which will interact with the slow

space-charge wave on the inner beam is the E z component, which

can be written-as

Sbs ' minPbz 2 P b ( c ° ' p b z ) aEV.Ez= 1 R'w E(z)I- E_ z
C (z) 8z

(A. 6)

The first assumption is that &* f < a f which implies that the effect

of the periodicity is small.

Ie(z) = , i .e., if there were no variation in z, the

solution would be

E.= E(x, y) ej(Wt- Pz) (A. 7)

(P = wfi- )
Since there is in fact variation in z, e(z) = a LAE sin Pbz ,

the actual value. of E z , will be different than Eq. (A. 7), but the

equation canbe considered a first order approximation. There-

fore
8 E.
az- E z~ (A. 8)

Assuming Pb> A

JVZE ' 2[ ?Z (in PbZ)] E z  (A. 9)
P6I

so that 2 [ P - b0
"- j P 4 (sin bz  dz.]

E =E E(xy)e.10
S 5



Equation (A. 10) is a second order approximation of E z. Assuming

2

one canrewrite Eq. (A. 10)

E=E y)e e - (I- b sin Pb z ) dz (A. 12)

j[wt- (z + cosbz]
E z= Ez(Xy) e 2 Ei(A. 13)

" I JE13( I b EI ) e (A.14)
n= -o Z

This gives the second-order approximation for the fields for the

waveg~ide filled with a periodic dielectric. How the dielectric

corresponds to the hollow bunched beam remains to be shown.

One can choose a frame of referenceX moving with the

bunched electron beam. The equations developed for Z so far

have tacitly aswumed that the laboratory frame of reference (a

stationary frame of reference X) is used. But all these equations

may be transformed to the moving frame of reference by t-ransfor-

nmtoisa imilar to those.in Sec. I. B. However, Eqs. (A. 1) to

(A. 14) appear essentially the same in the moving frame of reference

X', since the Doppler shift and relativistic corrections of the elec-

tromagnetic wave are small in the experimental tube. -

The beam appears as -a plasma in .XI and for an infinite

magnetic field this plasma may be considered a dielectric and will

correspond to the permittivity in the previous equations. The

transformation from X to XI does not materially influence the

electromagnetic wave but permits one to replace the beam by a
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plasma. The dAelectric constant corresponding to a plasma is

2

L 0 -z-- ) (longitdinal component)

(A. 15)

. to (transverse component)

Up to, We point s- d4stinction has been made between longi-

tudinal and tranve roe. components. of the permittivity, as the per-

mittivity was tacitly assumed to be&-umdia-r periddd ins a. I the ex-

perimental tube the frequency w is sufficiently greater than the

plasma friqueacy so that w q 2 /w W I and the preceding equations

are essentially correct. More eitLy, ,oneassmnaaishb -

magnetic field and the relation

4 = 4EL 04O (A. 16)

With no beam present the permittivity of the empty guide is

1 0" With an unbunched beam present in the waveguide the permit-

tivity is given by Eq. (A.15). For a bunched beam as shownmin Fig.

=1 (W2 / 2 ) C0 , This states, in effect, how well the hollow

beam is bunched.

Replacing the beam by an equivalent, dielectric, Eq. (A. 14)

for the set of partial electromagnetic waves becomes

GO Pb W2Z e j 6[t- Az +Pbnx] (A.17)

n= -oo 2P-

The interaction.impedance is

E 2ns

Note that

=jn 2 b (A 19)
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For the amVermeal tube (Usag valuu on page SO)

0 .~1

1 3 x 10 - 4

2 1.l1xlO08

These small values of IEnzI /I% I~ indicate low values of the inter-
action impedance. and it is not surprising that no gain vwas observed

in the experimeuaal tube.
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